EE 505

Lecture 16

Current Steering DACs

Review from Last Lecture R-String DAC

Compensated Fine String Interpolator

Review from Last Lecture Kelvin-Varley Divider

Concept Can Be Extended to Any Base

- Shown as binary divider (1 bits/stage)
- 3 resistors in each string except last which has 2

No decoder needed to control switches

Review from Last Lecture

Kelvin-Varley Divider

Concept Can Be Extended to Any Base

- ➤ Shown as binary divider (n₁ bits/stage)
- 2ⁿ¹+1 resistors in each string except last which has 2ⁿ¹

Small decoder needed to control switches

Voltage on MSB nodes ideally do not change with code

Switch impedance affects attenuation

Kelvin-Varley Divider

Concept Can Be Extended to Any Base

- ➤ Shown as binary divider (n₁ bits/stage)
- > 2ⁿ¹+1 resistors in each string except last which has 2ⁿ¹

$$I_i = I_1$$
 for all i

Switch impedance compensation

Kelvin-Varley Divider

Concept Can Be Extended to Any Base

$$I_i = I_1$$
 for all i

Switch impedance compensation

Comparison of Kelvin-Varley and R-2R

Kelvin-Varley Divider

R-2R

Both have 3 Resistors and 2 switches / slice

Are there any benefits of the KV structure relative to the R-2R structure?

$$d_k = \begin{cases} 1 & \text{if } S_k \text{ closed} \\ 0 & \text{if } S_k \text{ open} \end{cases}$$

$$V_{OUT} = \left[\sum_{i=1}^{k} d_{i} I_{i}\right] (-R)$$

- Current sources usually unary or binary-bundled unary
- Termed bottom-plate switching
- Can eliminate resistors from DAC core
- Op Amp and resistor R can be external
- Can use all same type of switches
- Switch impedance not critical nor is switch matching
- Popular MDAC approach

Unary Current Sources

Inherently Insensitive to Nonlinearities and Component Values in Switches and Resistors

- Termed "top plate switching"
- Thermometer coding (routing challenge!)
- Excellent DNL properties
- INL may be poor, typically near mid range
- Switch kickback to V_{REF}
- Not suitable for use as MDAC

Unary Current Sources

- Inherently Insensitive to Nonlinearities in Switches and Resistors
- Smaller ON resistance and less phase-shift from clock edges
 - Termed "bottom plate switching"
 - Thermometer coded
 - Can be used as MDAC
 - Reduced kickback to V_{RFF}

- **Unary R:switch cells**
- Parasitic capacitances on drain nodes of switches cause transient settling delays
- R+Rsw is nonlinear (so nonlinear relationship between I_k and V_{REF}) but does not affect linearity of DAC
- Resistor and switch impedance matching important (but not to each other)
- Previous code dependent transient (parasitic capacitances on drains of switches)

Transistor Implementation of Switches

$$\beta = \frac{\frac{R_{CELL}}{k}}{\frac{R_{CELL}}{k} + R_F} = \frac{R_{CELL}}{R_{CELL} + kR_F}$$
If $V_{OUTFS} = -V_{REF} \frac{N-1}{N}$

$$\frac{N}{2N-1} < \beta \le 1$$
approximate

 $\frac{1}{N-1} < \beta \le 1$ approximately $0.5 < \beta \le 1$

R_{CELL}=N R_F

Phase-margin code dependent so distortion will be introduced if not fully settled Current drawn from V_{REF} changes with code (settling issues if $R_{0\ VREF}$ is not 0)

Will β compensation "half" resistance of cells? Will β compensation double area for cells?

Is matching of R and compensating R critical?

Can C_p and β compensation be used simultaneously? Is the frequency-dependent β code dependent?

many more samples per DAC clock are often used (e.g. 64K samples, 31 periods would be approx 2114 samples/period)

Is this how we should characterize the spectral performance of a DAC?

one mid-period sample per DAC clock period (or maybe even less)

Assume Nyquist sampling rate is satisfied

Is this how we should characterize the spectral performance of a DAC?

one near-end sample per DAC clock period

Assume Nyquist sampling rate is satisfied

Is this how we should characterize the spectral performance of a DAC?

Assume Nyquist sampling rate is satisfied

Does it make a difference?

Yes! But depends on application which is useful

Yes! But depends on application which is useful

- If entire DAC output is of interest, any nonlinearity including previous code dependence will degrade linearity
- If DAC output is simply sampled, only value at sample point is of concern

Current Steering

- Unary cells bundled to implement binary cells (so no net change in number of cells)
- Need for decoder eliminated!
- DNL may be a major problem
- INL performance about same as thermometer coded if same unit resistors used
- Sizing and layout of switches is critical
- Large total resistance

Observe thermometer coding and binary weighted both offer some major advantages and some major limitations

Large DNL dominantly occurs at mid-code and due to ALL resistors switching together Can unary cell bundling be regrouped to reduce DNL

Reduced Resistance Structure

(actually concerned about number of unary cells, not total ohmic resistance)

- Significant reduction in resistance possible
- Can be inserted at more than one place to further reduce resistance values
- Introduces a "floating node" but voltage on floating node does not change (if current is stee
- Current drawn from V_{RFF} does not change with code
- Dummy switching can be used for β compensation
- If inserted at each intersection becomes R-2R structure

Reduced Resistance Structure

with unary R/2 cells, required 3n+1 cells compared to 2ⁿ-1 cells for binary bundled array

Reduced Resistance Structure

3n+1 cells

Is the R-2R structure smaller?

Does the R-2R structure perform better?

What metric should be used for comparing performance?

Reduced Resistance Structure

Slice Grouping Options with Series Resistors

Binary-Weighted Resistor Arrays

Actual layout of resistors is very important

Performance of Thermometer Coded vs Binary Coded DACs

Conventional Wisdom:

- Thermometer-coded structures have inherently small DNL
- Binary coded structures can have large DNL
- INL of both structures is comparable for same total area (provided area appropriately allocated)

- Will consider String DAC but nearly same results for current-steering DACs
- Current Steering DAC will generate current from resistors
- ➤ For Binary Coded DAC, MSB: 2ⁿ⁻¹ unary cells in parallel LSB: single unary cell

- Consider unit resistor of area 2µm² (shape not critical)
- Matching parameter A_R=0.02μm
- R_N=1K (not critical)

$$\sigma_R = \frac{R_N}{\sqrt{A}} A_{\rho R}$$

Assume Gaussian Distribution of Resistors

Example: n=10

A_p=0.02um

Resistor Sigma= 14.14Ω

String DAC

A_R=0.02μm R_N=1K

Simulation 1: INL_k

Example: n=10

String DAC

Resistor Sigma= 14.14Ω

Simulation 2: INL_k

Example: n=10

String DAC

Resistor Sigma= 14.14Ω

Simulation 3: INL_k

Example: n=10

String DAC

Resistor Sigma= 14.14Ω

Simulation 4: INL_k

Low DNL and random walk nature should be apparent

Resistor Sigma= 14.14Ω

String DAC

INLkmax_mean = -2.11116e-05 INLkmax_sigma = 0.226783

Histogram of INL_{kmax} from 100,000 runs

Appears to be Gaussian

Histogram of INL from 100,000 runs

Not Gaussian

Example: n=10

R_N=1K

 $A_{p} = 0.02 \mu m$

Resistor Sigma= 14.14Ω

String DAC

Histogram of INL from 100,000 runs

INLkmax_mean = -2.11116e-05 INLkmax_sigma = 0.226783 Gaussian (and analytical)

INLmean = 0.384382 INLsigma = 0.117732 Not Gaussian

Question: Can a predictor of JNL be obtained from INLkmax?

$$\sigma_{INL} = \phi(\sigma_{INLkmax}, A_R, A, n)$$

Question: Can a predictor of f_{INL} (the pdf) be obtained from f_{INLkmax}?

Example: n=10

 $A_R=0.02\mu m$ $R_N=1K$

Resistor Sigma= 14.14Ω

String DAC

DNLmean = 0.0486494 DNLsigma = 0.00471025

Histogram of DNL from 100,000 runs

Not Gaussian but both mean and sigma are very small

Question: Can a predictor of f_{DNL} (the pdf) be obtained from f_{INL}?

Example: n=10

0.02um

Resistor Sigma= 14.14Ω

Binary DAC

A_R=0.02μm R_N=1K

Simulation 1: INL_k

Example: n=10

A_R=0.02μm

 $R_N=1K$

Resistor Sigma= 14.14Ω

Binary DAC

Simulation 2: INL_k

Example: n=10

A_R=0.02μm

 $R_N=1K$

Resistor Sigma= 14.14Ω

Binary DAC

Simulation 3: INL_k

Example: n=10

0.02um

Resistor Sigma= 14.14Ω

Binary DAC

 $A_R=0.02\mu m$ $R_N=1K$

Simulation 4: INL_k

Large DNL bit INL does not appear to be much different than for string DAC

Example: n=10

Resistor Sigma= 14.14Ω

Binary DAC

INLkmax_mean = -.00526008 INLkmax_sigma = 0.23196

Histogram of INL_{kmax} from 100,000 runs

Appears to be Gaussian

Example: n=10

 $A_R=0.02\mu m$ $R_N=1K$

Resistor Sigma= 14.14Ω

Binary DAC

INLmean = 0.368441 INLsigma = 0.126133

Histogram of INL from 100,000 runs
Not Gaussian

Example: n=10

 $A_R=0.02\mu m$ $R_N=1K$

Resistor Sigma= 14.14Ω

Binary DAC

Histogram of INL from 100,000 runs

INLkmax_mean = -.00526008 INLkmax_sigma = 0.23196

Gaussian (and analytical)

INLmean = 0.368441INLsigma = 0.126133

Not Gaussian

Question: Can a predictor of INL be obtained from INLkmax?

$$\sigma_{INL} = \phi(\sigma_{INLk\max}, A_R, A, n)$$

Question: Can a predictor of f_{INL} (the pdf) be obtained from f_{INLkmax}?

Example: n=10

Binary DAC

Resistor Sigma= 14.14Ω

DNLmean = 0.46978 DNLsigma = 0.227768

Histogram of DNL from 100,000 runs

Not Gaussian and both mean and sigma are not small

Question: Can a predictor of f_{DNL} (the pdf) be obtained from f_{INL} ?

Example: n=10

Resistor Sigma= 14.14Ω

Simulation 1: INL_k

String

Binary Weighted

Actual outputs will differ significantly

Example: n=10

Resistor Sigma= 14.14Ω

Both structures have essentially the same area

Histogram of INL from 100,000 runs

Since mathematical form for PDF is not available, not easy to analytically calculate yield

Example: n=10

$$A_R=0.02\mu m$$

 $R_N=1K$

Resistor Sigma= 14.14Ω

Both structures have essentially the same area

String DAC

Resolution = 10 AR = 0.02

Rnom = 1000 Area Unit Resistor = $2\mu m^2$

 $INLkmax_mean = -2.11116e-05$

INLmean € 0.384382

INLtarget = 0.5000

Nruns = 100000

Resistor Sigma= 14.1421

INLkmax sigma = 0.226783

INLsigma = 0.117732

Yield(%) = 84.0120

Binary DAC

Resolution = 10 AR = 0.02

Rnom = 1000 Area unit resistor= $2\mu m^2$

INLmean = 0.367036

INLkmax mean = 0.000130823

 $\frac{DNLmean}{DNLtarget} = 0.46978$ $\frac{DNLtarget}{DNLtarget} = 0.5000$

Nruns = 100,000

Resistor Sigma= 14.1421

INLsigma = 0.128294

INLkmax sigma = 0.226276

DNLsigma = 0.227768Yield (%) = 84.8580

Current Steering DACs

Segmented Resistor Arrays

- Combines two types of architectures
- Can inherit advantages of both thermometer and binary approach
- Minimizes limitations of both thermometer and binary approach

Current Steering DACs

Reduced Resistance Structure

Slice Grouping Options with Series Resistors

Is it better to use series unary cells to form R or parallel unary cells to form $\frac{R}{2^n}$?

In the two scenarios, is the dominant area allocated to the MSB or the LSB part of the ladder?

Will this choice make much difference in yield?

What yield-related performance metric will be most affected?

Current Steering DACs

Reduced Resistance Structure

Is it better to use series unary cells to form R or parallel unary cells to form $\frac{R}{2^n}$?

2ⁿ-1 cells

for n odd $2^{\frac{n+3}{2}} - 3$ cells

2ⁿ-1 cells

n	Series	Parallel	Split
3	7	7	5
5	31	31	13
7	127	127	29
9	511	511	61
11	2047	2047	125
13	8191	8191	253
15	32767	32767	509

Stay Safe and Stay Healthy!

End of Lecture 16